

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Studies of Tertiary Amine Oxides. Part<sup>1</sup> 15. Carbon - 13 nuclear magnetic resonance spectra of some N-(4-substituted phenyl) piperidine, the corresponding N-oxides, and their thermal-rearrangement product

Abdul-Hussain Khuthier<sup>a</sup>, Jasim M. A. Al-rawi<sup>a</sup>, Salim Y. Hanna<sup>a</sup>

<sup>a</sup> Department of Chemistry, College of Science, University of Mosul, Mosul, IRAQ

**To cite this Article** Khuthier, Abdul-Hussain , Al-rawi, Jasim M. A. and Hanna, Salim Y.(1989) 'Studies of Tertiary Amine Oxides. Part<sup>1</sup> 15. Carbon - 13 nuclear magnetic resonance spectra of some N-(4-substituted phenyl) piperidine, the corresponding N-oxides, and their thermal-rearrangement product', Spectroscopy Letters, 22: 5, 549 — 560

**To link to this Article: DOI:** 10.1080/00387018908053904

**URL:** <http://dx.doi.org/10.1080/00387018908053904>

## PLEASE SCROLL DOWN FOR ARTICLE

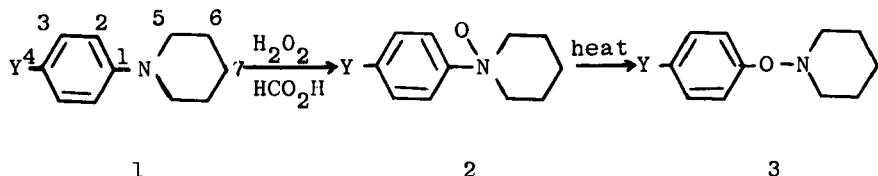
Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Studies of Tertiary Amine Oxides. Part<sup>1</sup> 15. Carbon - 13 nuclear magnetic resonance spectra of some N-(4-substituted phenyl) piperidine, the corresponding N-oxides, and their thermal-rearrangement product.

Abdul-Hussain Khuthier\*, Jasim M.A. Al-Rawi & Salim Y. Hanna,  
Department of Chemistry, College of Science, University of  
Mosul, Mosul, IRAQ.


**Abstract:**

The carbon-13 chemical shifts of seven N-(4-substituted phenyl) piperidine; the corresponding N-oxides, and their thermal rearrangement products were analyzed and assigned. The N-oxidation effect on the carbon-13 chemical shift is discussed, a correlation of N-oxidation effect with substituent constant ( $\sigma_p$ ,  $\sigma_m$ ,  $\sigma_i$  and  $\sigma_R^c$ ) has been studied; dual substituent-parameter equation produce better correlation.

**Introduction:**

As part of our interest in the chemistry of tertiary amine N-oxide we have found in a recent publication<sup>2</sup> that

N-(4-substituted phenyl) piperidine N-oxides undergo a facile thermal isomerization to O-(4-substituted phenyl)-N-hydroxy piperidines (scheme 1) through a mechanism have named as  $S_NAr_i^3$ .



| Compound no. | Y                                                   | Compound no. | Y                                          |
|--------------|-----------------------------------------------------|--------------|--------------------------------------------|
| a            | $-NO_2$                                             | e            | $^{8} \quad 9 \quad 10$<br>$-CO_2CH_2CH_3$ |
| b            | $^{8} \quad -CN$                                    | f            | $^{8} \quad -CONH_2$                       |
| c            | $^{8} \quad 9 \quad -COMe$                          | g            | $-H$                                       |
| d            | $^{8} \quad 9 \quad 10 \quad 11 \quad -CO \quad 12$ |              |                                            |

(Scheme 1)

NMR Spectroscopy is a powerful tool for studying the electronic behaviour of the N-oxide function; the N-oxidation effect on the carbon-13 chemical shift of a number of N-oxide molecules have been studied and correlated qualitatively with molecular environment<sup>4,5</sup>. However there have been no previous attempts in the literature to correlate quantitatively the electronic substituent constant with the N-oxidation effect on the carbon-13 chemical shift in aliphatic tertiary amine oxides. The present work is concerned with the carbon-13 chemical shift assignment and the corre-

lation of substituent chemical shift (SCS) in the N-oxidation effect (SCS  $\propto \Delta \delta_C$ )<sup>11</sup>, in some N-(4-substituted phenyl)piperidine (1) (Scheme 1), with Hammett parameters<sup>6</sup>  $\sigma_p$ ,  $\sigma_m$ ,  $\sigma_{p'}^-$ , and separate polar and mesomeric parameters<sup>9</sup>  $\sigma_I$ ,  $\sigma_R^\circ$ . Analysis of the N-oxidation effect using the dual substituent parameters (eq. 1) yield correlations with good precisions.

$$SCS = C + \rho_I \sigma_I + \rho_R \sigma_R^\circ \quad \dots \dots \dots \quad (1)$$

#### Results and Discussion:

##### The assignment of carbon-13 chemical shift:

Proton decoupled as well as coupled spectra were used in the assignment of the carbon-13 chemical shift of the amines (1) (Table 1), the amine oxides (2) (Table 2) and their rearrangement products (3) (Table 3).

The para-substituent increments<sup>7</sup> were used to calculate the carbon-13 chemical shift of the aromatic ring carbons in the amines, and the amine oxides starting from phenyl piperidine and phenyl piperidine N-oxide respectively.

Table (1) showed the observed and the calculated carbon-13 chemical shifts of the aromatic ring carbons for the amines with a very good agreement. A gated experiment for compound 1a in which C-2,  $\delta$  112.4 ( $^1J = 158.4$  Hz;  $^2J = 5.6$  Hz); C-3,  $\delta$  126 ( $^1J = 173.6$  Hz,  $^2J = 4.8$  Hz) provides further support for the above assignment. Similarly the assignment of aromatic ring carbons in the N-oxide (2) was made using the first and second order couplings, for C-1 in compound 2a,  $\delta$  161.2, ( $^1J = 3$  Hz;  $^3J = 5$  Hz (meta coupling<sup>8</sup>); C-2,

Table 1: Carbon-13 chemical shift assignment relative to TMS for N-(4-substituted phenyl) piperidine (1)

| Compd.<br>No. | C-1<br>(cal.)*   | C-2<br>(cal.)*   | C-3<br>(cal.)*   | C-4<br>(cal.)*   | C-5<br>(cal.)* | C-6  | C-7  | C-8   | C-9   | C-10  | C-11  | C-12  |
|---------------|------------------|------------------|------------------|------------------|----------------|------|------|-------|-------|-------|-------|-------|
| 1 a**         | 155.1<br>(151.8) | 112.4<br>(115.6) | 126.0<br>(124.0) | 137.8<br>(138.2) | 48.4           | 25.4 | 24.2 | -     | -     | -     | -     | -     |
| 1 b           | 153.7<br>(149.9) | 113.9<br>(115.3) | 133.3<br>(132.4) | 98.7<br>(102.8)  | 48.2           | 25.2 | 24.2 | 120.2 | -     | -     | -     | -     |
| 1 c           | 154.0<br>(150.2) | 113.0<br>(114.7) | 130.2<br>(128.9) | 126.8<br>(127.3) | 47.4           | 25.9 | 24.0 | 195.2 | 25.9  | -     | -     | -     |
| 1 d           | 153.8<br>(149.6) | 112.9<br>(114.5) | 131.1<br>(130.5) | 125.0<br>(127.6) | 47.8           | 24.4 | 23.4 | 193.0 | 139.0 | 128.2 | 132.1 | 128.9 |
| 1 e           | 154.6<br>(149.5) | 113.6<br>(114.2) | 131.2<br>(128.3) | 119.2<br>(119.5) | 48.9           | 25.3 | 24.4 | 166.8 | 60.2  | 14.4  | -     | -     |
| 1 f           | 153.1<br>(148.4) | 113.5<br>(114.4) | 128.9<br>(127.7) | 122.8<br>(124.0) | 48.4           | 24.4 | 23.9 | 167.8 | -     | -     | -     | -     |
| 1 g           | 146.0            | 114.7            | 128.8            | 118.2            | 50.4           | 25.8 | 24.2 | -     | -     | -     | -     | -     |

\* (Cal.) Carbon-13 chemical shift calculated using the substituent effect on the carbon-13 chemical shift of the phenyl piperidine (1g).

\*\* Taken from reference (4).

Table 2: Carbon-13 chemical shift assignment relative to TMS for N-(*-4* substituted phenyl) piperidine N-oxides (2).

| Compd. No. | C-1<br>(cal.)*   | C-2<br>(cal.)*   | C-3<br>(cal.)*   | C-4<br>(cal.)*   | C-5<br>(cal.)* | C-6  | C-7  | C-8   | C-9   | C-10  | C-11  | C-12  |
|------------|------------------|------------------|------------------|------------------|----------------|------|------|-------|-------|-------|-------|-------|
| 2 a**      | 161.2<br>(161.2) | 122.5<br>(121.0) | 124.5<br>(123.6) | 147.9<br>(148.7) | 69.2           | 21.3 | 21.9 | -     | -     | -     | -     | -     |
| 2 b        | 159.7<br>(159.3) | 122.4<br>(120.7) | 133.0<br>(132.0) | 111.5<br>(113.3) | 67.6           | 20.8 | 20.8 | 118.1 | -     | -     | -     | -     |
| 2 c        | 159.4<br>(159.6) | 121.3<br>(120.1) | 129.2<br>(128.5) | 137.3<br>(137.8) | 68.9           | 21.8 | 20.8 | 197.2 | 26.8  | -     | -     | -     |
| 2 d        | 159.0<br>(159.0) | 121.2<br>(119.9) | 130.0<br>(130.1) | 136.3<br>(138.1) | 67.6           | 20.9 | 20.9 | 194.4 | 132.8 | 128.6 | 132.0 | 129.6 |
| 2 e        | 160.0<br>(158.9) | 121.6<br>(119.6) | 129.6<br>(127.9) | 129.9<br>(130.0) | 67.5           | 20.9 | 20.9 | 165.1 | 61.0  | 14.1  | -     | -     |
| 2 f        | 158.0<br>(158.1) | 120.8<br>(119.8) | 127.8<br>(127.3) | 134.2<br>(127.3) | 67.7           | 20.7 | 20.9 | 166.1 | -     | -     | -     | -     |
| 2 g        | 155.4            | 120.1            | 128.4            | 128.7            | 68.7           | 21.3 | 21.8 | -     | -     | -     | -     | -     |

\* (cal.) Carbon-13 chemical shift calculated using the substituent effect on the carbon-13 chemical shift of the phenyl piperidine N-oxide (2g).

\*\* Taken from reference (4).

Table 3: Carbon-13 chemical shift assignment relative to TMS for O-(4-substituted phenyl) hydroxyl amines (3).

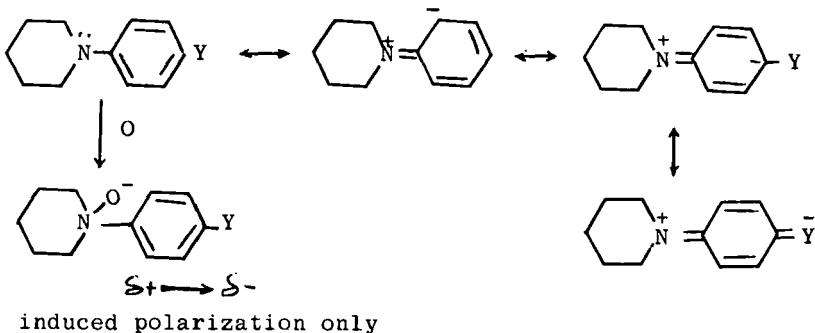
| Compd.<br>No. | C-1   | C-2   | C-3   | C-4   | C-5  | C-6  | C-7  | C-8   | C-9   | C-10  | C-11  | C-12  |
|---------------|-------|-------|-------|-------|------|------|------|-------|-------|-------|-------|-------|
| 3 a*          | 164.6 | 113.8 | 125.8 | 141.5 | 56.9 | 25.4 | 23.3 | -     | -     | -     | -     | -     |
| 3 b           | 163.1 | 114.6 | 133.9 | 104.2 | 56.9 | 25.3 | 23.3 | 119.8 | -     | -     | -     | -     |
| 3 c           | 163.0 | 113.6 | 130.6 | 130.9 | 56.9 | 25.4 | 23.3 | 197.1 | 26.2  | -     | -     | -     |
| 3 d           | 163.2 | 113.5 | 128.2 | 132.6 | 56.9 | 25.4 | 24.0 | 195.7 | 138.6 | 129.8 | 131.8 | 130.8 |
| 3 e           | 161.3 | 113.7 | 131.3 | 131.8 | 56.8 | 25.5 | 23.3 | 167.1 | 60.4  | 14.5  | -     | -     |

\* Taken from reference (4).

Table 4: The N-oxidation effect\* on the carbon-13 chemical shift of N-(4-substituted phenyl)piperidine (1).

| Compd. No. | $\Delta\delta_{C-1}$ | $\Delta\delta_{C-2}$ | $\Delta\delta_{C-3}$ | $\Delta\delta_{C-4}$ | $\Delta\delta_{C-5}$ | $\Delta\delta_{C-6}$ | $\Delta\delta_{C-7}$ | $\Delta\delta_{C-8}$ | $\Delta\delta_{C-9}$ | $\Delta\delta_{C-10}$ | $\Delta\delta_{C-11}$ | $\Delta\delta_{C-12}$ |
|------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|
| a          | +6.1                 | +10.1                | -1.5                 | +10.1                | +20.8                | -4.1                 | -2.3                 | -                    | -                    | -                     | -                     | -                     |
| b          | +6.0                 | + 8.5                | -0.3                 | +12.8                | +19.4                | -4.4                 | -3.4                 | -2.1                 | -                    | -                     | -                     | -                     |
| c          | +5.4                 | + 8.3                | -1.0                 | +10.5                | +21.5                | -5.1                 | -3.2                 | +2.0                 | +0.9                 | -                     | -                     | -                     |
| d          | +5.2                 | + 8.3                | -1.2                 | +11.3                | +19.8                | -3.5                 | -2.5                 | +1.4                 | -6.3                 | +0.4                  | -0.1                  | +0.7                  |
| e          | +5.4                 | + 8.0                | -1.6                 | +10.7                | +18.6                | -4.4                 | -3.5                 | -1.7                 | +0.8                 | -                     | -                     | -                     |
| f          | +4.9                 | + 7.3                | -1.1                 | +11.4                | +19.3                | -3.5                 | -5.0                 | -1.7                 | -                    | -                     | -                     | -                     |
| g          | +9.4                 | + 5.4                | -0.4                 | +10.5                | +18.3                | -4.5                 | -2.4                 | -                    | -                    | -                     | -                     | -                     |

\*  $\Delta\delta_{C} = \delta_{C}$  of the N-oxide (2) -  $\delta_{C}$  of the corresponding amine (1).


$\delta$  122.5 ( $^1J = 170$  Hz,  $^2J = 2.5$  Hz); C-3,  $\delta$  124.5 ( $^1J = 162$  Hz,  $^2J = 3$  Hz), C-4,  $\delta$  147.9 ( $^1J = 4$  Hz;  $^3J = 6$  Hz (meta coupling)). The same approach was followed in the assignments of aromatic ring carbon in the rearrangement products (3); (for 3a, C-2,  $\delta$  113.8 ( $^1J = 162$  Hz,  $^2J = 5$  Hz); C-3,  $\delta$  125.8 ( $^1J = 165$  Hz,  $^2J = 6$  Hz).

The carbon-13 chemical shifts for the heterocyclic  $sp^3$  carbons (piperidine ring) were obtained using the previously reported<sup>4,5</sup> values for the heterocyclic saturated carbon atoms of the amines, the amine oxides and the rearrangement products.

#### The N-oxidation effect:

The N-oxidation of compounds (1a-g) to the corresponding N-oxides (2a-g) resulted in deshielding of C-1, C-2 and C-4 (Table 4). This deshielding is a result of the N-oxidation reaction which utilized the lone pair of the nitrogen of the amine by the oxygen of the N-oxide. The conversion of the amine to the N-oxide results in interruption of delocalisation of the amine nitrogen lone pair through the aromatic ring (Scheme 2), and so a deshielding is expected for ortho- and para-carbons. On the other hand the C-3 was somewhat unaffected by the N-oxidation with a small shielding (0.3 - 1.6 p.p.m.).

The heterocyclic ring carbon C-5 showed deshielding by (18.3 - 20.8 p.p.m.) as a result of the N-oxidation while C-6 and C-7 showed a shielding of (2.3 - 5.1 p.p.m.) (Table 4).



(Scheme 2)

The N-oxidation effects and the correlation analysis:

It has been shown that various equations with one and two parameters can be successfully used for correlation of the para-substituent effect on the carbon-13 chemical shifts ( $\Delta\delta_{C-1}$ ) of aromatic compounds<sup>10</sup>, (e.g. equation 1).

In Hammett plots of substituent chemical shift (SCS) in the N-oxidation effect ( $SCS * \Delta\delta_{C-1}$ ) vs.  $\sigma_p$  and  $\sigma_m$  values the correlation coefficient ( $r$ ) = 0.94 and 0.92 respectively. However, the use of a dual parameter  $\sigma_R^o$  and  $\sigma_I^o$  (eq. 2) gives a better correlation (Figure);,  $r = 0.96$

$$(SCS * \Delta\delta_{C-1}) = 5.499 + 2.197 \sigma_I^o \pm 0.31 + 5.693 \sigma_R^o \pm 1.93 \dots (2)$$

The general predominant term ( $5.693 \sigma_R^o$ ) has been attributed to the effect of  $\pi$ -electron delocalization in amines as represented by scheme (2). The second term ( $2.197 \sigma_I^o$ ) is attributed to the effect of substituent induced polarization of the ring  $\pi$ -electrons. Therefore the substituent interacts in two mechanisms: resonance substituent effect mechanism and through-space transmission and polarization of the ring

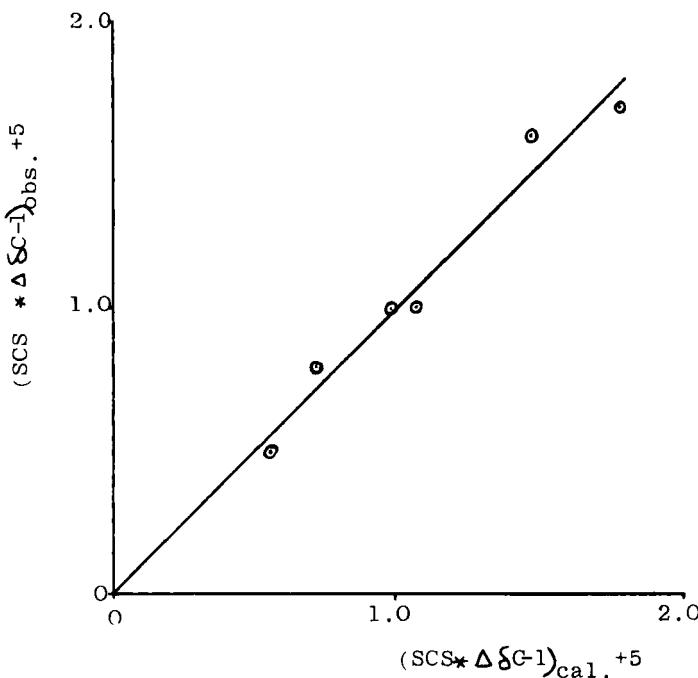



Fig. Plot of  $(SCS * \Delta \delta_{C-1})$  observed VS.  $(SCS * \Delta \delta_{C-1})$  calculated according to equation (2).

$\pi$ -electrons with no net electron transfer between the substituent and the ring  $\pi$ -electrons (Scheme 2). The relative importance of factors operating in the N-oxidation effect can be estimated from the ratio  $\frac{\rho_R}{\rho_I} = \frac{5.693}{2.197} = 2.6$ .

The magnitude of the ratio means that resonance is always stronger than inductive effect at C-1 N-oxidation effect. The (SCS) in the N-oxidation effect on the aromatic C-2 (SCS \*  $\Delta \delta_{C-2}$ ) is found to be fairly correlated with the substituent constant  $\sigma_m$  ( $r = 0.9$ ) whereas correlation with dual parameters

$\sigma_I$  and  $\sigma_R^\circ$  equation (3) produces only very slight improvement ( $r = 0.91$ ).

$$(SCS * \Delta \delta_{C-2}) = 0.566 + 4.459 \sigma_I \pm 1.07 + 13.12 \sigma_R^\circ \\ \pm 6.72 \dots \dots \dots \quad (3)$$

On the other hand poor correlation was found between the  $(SCS * \Delta \delta_{C-3})$  and  $(SCS * \Delta \delta_{C-4})$  and Hammett substituent constants.

#### EXPERIMENTAL:

##### Synthesis:

The tertiary amines were synthesized by nucleophilic substitution of piperidine with 4-substituted fluorobenzene in dimethyl sulphoxide. The N-oxides were prepared by oxidation of the tertiary amines with performic acid (a mixture of 98 % formic acid and 30 % hydrogen peroxide). Rearrangement of the tertiary amine N-oxides was performed by heating the free base in dioxane for 3 hrs. The products were purified by column chromatography with neutral alumina. The preparative details of these compounds are reported in reference (2).

##### Carbon-13 NMR Spectra:

Proton decoupled and coupled spectra were obtained on a Bruker WH 90 DS spectrometer equipped with an Aspect 2000, 32k computer operating at 22.63MHz for  $^{13}C$  NMR with internal deuterium lock. The spectral width was 6024 Hz; a flip angle of  $45^\circ$  was used and the free induction decay was accumulated in 8k, and the frequency domain spectra obtained in 4k, data

points. Samples were dissolved in  $\text{CDCl}_3$  10 - 15 % by V/V or W/V in a 10 mm O.D. Wilmad tube and a few drops of TMS were added as internal reference.

References:

1. Part 14, A.K.S. Al-Kazzaz, S.Y. Hanna, and A.H. Khuthier, J. Chem. Soc. Perkin 2. Submitted.
2. A.H. Khuthier, K.Y. Al-Mallah, S.Y. Hanna and N.A.I. Abdulla, J. Org. Chem., 52, 1710 (1987).
3. A.H. Khuthier, S.Y. Hanna, and K.Y. Al-Mallah, J. Chem. Soc. Perkin 2. 1157, (1988).
4. A.H. Khuthier, J.M.A. Al-Rawi, A.K. Al-Kazzaz and M.A. Al-Iraqi. Org. Mag. Reson., 18, 104, (1982); J.M.A. Al-Rawi, A.H. Khuthier and S.Y. Hanna, Sepct. Lett. 21, 249, (1988).
5. M.A. Al-Iraqi, J.M.A. Al-Rawi and A.H. Khuthier, Org. Mag. Reson., 14, 161, (1980); J.M.A. Al-Rawi, A.H. Khuthier and F.T. Abachi, Spectrochimica Acta, 43A, 1121 (1987).
6. R.A.Y. Jones (Physical and Mech. Org. Chem.) Cambridge University Press (1979) page 35-55.
7. F.W. Wehrlin and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Heyden, London (1978) p. 47.
8. Ref. 7 page 86.
9. J. Bromilow, R.T.C. Brownlee, V.O. Lopez and R.W. Taft, J. Org. Chem., 44, 2766, (1979).
10. D.F. Ewing (Correlation Analysis in Chemistry) ed. by N.B. Chapman and J. Shorter, p. 357, Plenum, New York. (1978).
11.  $(\text{SCS} \times \Delta \delta_{\text{C}}) = (\Delta \delta_{\text{C}} \text{ } Y \neq \text{H}) - (\Delta \delta_{\text{C}} \text{ } Y = \text{H})$ .

Date Received: 01/12/89

Date Accepted: 02/28/89